Calcium- and myristoyl-dependent properties of guanylate cyclase-activating protein-1 and protein-2.
نویسندگان
چکیده
In visual transduction, guanylate cyclase-activating proteins (GCAPs) activate the membrane-bound guanylate cyclase 1 (ROS-GC1) to synthesize cGMP under conditions of low cytoplasmic [Ca2+]free. GCAPs are neuronal Ca2+-binding proteins with three functional EF-hands and a consensus site for N-terminal myristoylation. GCAP-1 and GCAP-2 regulated ROS-GC1 activities differently. The myristoyl group in GCAP-1 had a strong influence on the Ca2+-dependent regulation of ROS-GC1 (shift in IC50). In contrast, myristoylation of GCAP-2 did not change the cyclase activation profile (no shift in IC50). Thus, the myristoyl group controlled the Ca2+-sensitivity of GCAP-1, but not that of GCAP-2. The myristoyl group restricted the accessibility of one cysteine in GCAP-1 and GCAP-2 observed by measuring the time-dependent thiol reactivity of cysteines. This shielding effect was not relieved when Ca2+ was buffered by EGTA. We applied surface plasmon resonance (SPR) spectroscopy to monitor the Ca2+-dependent binding of myristoylated and nonmyristoylated GCAP-1 and GCAP-2 to immobilized phospholipid membranes. None of the GCAPs exhibited a Ca2+-myristoyl switch as observed for recoverin. Thus, the myristoyl group controls the Ca2+-sensitivity of GCAP-1 (not that of GCAP-2) by an allosteric mechanism, but this control step does not involve a myristoyl switch.
منابع مشابه
Stabilizing function for myristoyl group revealed by the crystal structure of a neuronal calcium sensor, guanylate cyclase-activating protein 1.
Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins myristoylated at the N terminus that regulate guanylate cyclases in photoreceptor cells and belong to the family of neuronal calcium sensors (NCS). Many NCS proteins display a recoverin-like "calcium-myristoyl switch" whereby the myristoyl group, buried inside the protein in the Ca(2+)-free state, becomes fully exposed up...
متن کاملStructural diversity of neuronal calcium sensor proteins and insights for activation of retinal guanylyl cyclase by GCAP1
Neuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite different. Retinal recoverin controls Ca(2) (+)-dependent inactivation of light...
متن کاملConformational changes in guanylate cyclase-activating protein 1 induced by Ca2+ and N-terminal fatty acid acylation.
Neuronal Ca(2+) sensors (NCS) are high-affinity Ca(2+)-binding proteins critical for regulating a vast range of physiological processes. Guanylate cyclase-activating proteins (GCAPs) are members of the NCS family responsible for activating retinal guanylate cyclases (GCs) at low Ca(2+) concentrations, triggering synthesis of cGMP and recovery of photoreceptor cells to the dark-adapted state. He...
متن کاملMolecular structure and target recognition of neuronal calcium sensor proteins
BACKGROUND Neuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite distinct. Retinal recoverin and guanylate cyclase activating protein...
متن کاملThe myristoylation of the neuronal Ca2+ -sensors guanylate cyclase-activating protein 1 and 2.
Guanylate cyclase-activating proteins (GCAPs) are Ca(2+)-binding proteins with a fatty acid (mainly myristic acid) that is covalently attached at the N terminus. Myristoylated forms of GCAP were produced in E. coli by coexpression of yeast N-myristoyl-transferase. Proteins with nearly 100% degree of myristoylation were obtained after chromatography on a reversed phase column. Although proteins ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 41 43 شماره
صفحات -
تاریخ انتشار 2002